

2015 Marking Scheme

Grade Awarded	Mark Required (/ ₁₀₀)	% candidates achieving grade
A	71+	30.6%
В	59+	22.9%
С	47+	21.1%
D	41+	9.2%
No award	< 41	16.1%

Section:	Multiple Choice	Extended Answer		
Average Mark:	26.7	/40	32.7	/60

	20	15 F	ligher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	С	73	 ☑A isotopes have the same number of protons ∴ have the same number of electrons ☑B isotopes have different mass numbers and have different masses ☑C isotopes have the same atomic number and have the same number of protons ☑D isotopes have the same number of protons so have the same nuclear charge
2	В	60	 A Iodine is a non-metal element with no electrical conductivity B potassium is a metal with a low melting point (63°C) and high electrical conductivity C silicon dioxide is a covalent network and has no electrical conductivity D potassium fluoride is ionic and has no electrical conductivity as a solid
3	С	71	 A rate of reaction increases as temperature increases (but graph shows rate decreasing) B The graph shows the rate of reaction when an enzyme is involved in the reaction C rate of reaction increases (exponentially) as temperature increases D The graph is typical of the effect of temperature on radioactive half-life
4	В	55	$Mg + 2H^{+} \longrightarrow Mg^{2+} + H_{2}$ $1 \text{mol} 2 \text{mol}$ $0.1 \text{mol} 0.2 \text{mol}$ $volume = \frac{\text{no. of mol}}{\text{concentration}} = \frac{0.2 \text{ mol}}{4 \text{ mol } l^{-1}} = 0.05 \text{litres} = 50 \text{ cm}^{3}$
5	D	65	 A displacement: higher up metal displaces a lower down metal ion from compound B neutralisation: H⁺ ions in acids react with bases/alkali to form water C oxidation: increase in the oxygen : hydrogen ratio in carbon compounds D precipitation: two ions meet and form insoluble precipitate which falls to the bottom
6	С	54	 A nail Q is protected from corrosion by sacrificial protection by higher up metal zinc B nail P corrodes to protect copper by sacrificial protection and Fe²⁺ cause blue colour C nail P corrodes to protect copper by sacrificial protection and Fe²⁺ cause blue colour D nail Q is protected from corrosion by sacrificial protection by higher up metal zinc
7	В	82	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$ = $\frac{0.035 - 0.025}{20 - 10}$ = $\frac{0.01}{10}$ = 0.001 mol l ⁻¹ s ⁻¹
8	A	80	 A 1st ionisation energy decreases down a group as outer electrons easier to remove B atomic size increases down a group as additional shells of electrons are added C electronegativity decreases down a group D melting point of group elements decreases going down group 1
9	С	85 newH=89	 A First ionisation energy forms a 1+ ion from the element in the gaseous state B First ionisation energy forms a 1+ ion from the element in the gaseous state C 1st ionisation energy: removal of one mole of electron from one mole of atoms in the gaseous state. D Element must be single atoms in the gaseous state before ionisation
10	В	81	 Group 3 elements have a low 3rd ionisation energy and a very high 4th ionisation energy removal of the 3rd electron creates a full outer shell removal of the 4th electron breaks into a full outer shell
11	A	75	 ☑A 1st Electron Affinity: one mole of atoms gains one mole of electrons in the gaseous state ☑B Element must be single atoms in the gaseous state before gaining electron ☑C Element must be single atoms in the gaseous state before gaining electron ☑D Electron affinity forms negative ions as it combines with electrons
12	A	74 newH=62	$\square A X-Y$: activation energy (E _a) for the forward reaction $\blacksquare B Y-X$: would give a negative value but activation energy (E _a) must be endothermic $\blacksquare C Y-Z$: would be the enthalpy change ($\triangle H$) for the reverse reaction $\blacksquare D Z-Y$: would be the enthalpy change ($\triangle H$) for the forward reaction

13	B	84	Enthalpy of Neutralisation:
		01	The energy change when one mole of water is formed in the neutralisation of an acid
			A 1mol Na ⁺ Cl ⁻ but 2 ions per f.u. ∴ 2mol of ions
14	D) 58	■B 1mol H ₂ molecules but 2 atoms per molecule ∴ 2mol of atoms
	U		EC 1mol of He atoms but 2 electrons per atom ∴ 2mol of electrons
			\square D 1mol of O ₂ molecules
			\mathbb{E} A 1mol O ₂ molecules = 2mol of O atoms but 1mol of CO molecules = 1mol of O atoms
15	D	72	\blacksquare B 1mol O ₂ molecules = 2mol of O atoms but 0.5 mol CO ₂ molecules = 1 mol of O atoms
	U	16	$\mathbb{E}C$ 0.5mol O ₂ molecules = 1mol of O atoms but 1 mol CO ₂ molecules = 2 mol of O atoms
			D 1mol O ₂ molecules = 2 mol of O atoms and 1 mol CO ₂ molecules = 2 mol of O atoms
			A not all gases are made of molecules as Noble gases are gases made of atoms
16	D	51	B number of electrons will vary depending on the elements inside the gas
10	U	21	EC some gases are made of molecules of varying number of atoms inside no. of atoms will vary
			D equal of volumes of gas (at same pressure and temp) will have the same number of moles of gas
		E1	\blacksquare A 1mol gas \rightarrow 2mol gas: products have greater volume than reactants
17	D	51	E B 1mol gas \rightarrow 1mol gas: products have same volume than reactants
		revH=54	$\mathbb{E}C$ zero mol of gas \rightarrow 1mol gas: products have greater volume than reactants
			☑D 2mol gas → zero mol of gas: products have less volume than reactants
			gfm Na = 23g mol ⁻¹ mass = 4.6g Molar Volume = 24 litres mol ⁻¹ Volume = 4.8 litres mass 4.6g 0.0 4.8 litres 0.0
			no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{4.6g}{23g \text{ mol}^{-1}}$ = 0.2mol no. of mol = $\frac{\text{Volume}}{\text{Molar Volume}}$ = $\frac{4.8 \text{ litres}}{23 \text{ litres mol}^{-1}}$ = 0.2mol
10	~	21	
18	С	26	4Na + O₂ → 2Na₂O
		_	4mol 1mol 2mol
			0.2mol 0.05mol
			0.05mol of O2 reacts with 0.2mol of Na \therefore 0.15mol of O2 (out of 0.2mol) is unreacted
			A fractional distillation of crude oil must be the first step
19	C	75	B fractional distillation of crude oil must be the first step
19	C	75	$oxtime{ }$ C fractionating into fractions before reforming into branched chains before blending
			D straight chains must be reformed into branched chains before blending
			2,2-dimethylpentan-1-ol has the molecular formula C7H15OH
			\blacksquare A CH ₃ CH ₂ CH ₂ CH(CH ₃)CH ₂ OH has the molecular formula of C ₆ H ₁₃ OH
20	В	78	$\square B$ (CH ₃) ₃ CCH(CH ₃)CH ₂ OH has the molecular formula of C ₇ H ₁₅ OH \therefore isomer
			$\mathbb{E}C$ CH ₃ CH ₂
			ED (CH ₃) ₂ CHC(CH ₃) ₂ CH ₂ CH ₂ OH has the molecular formula of C ₈ H ₁₇ OH
			A Hydrogen can be made from water or natural gas
21	В	67	☑B Methane (biogas) can be made from anaerobic fermentation of biological material
			\blacksquare C Methanol is made from synthesis gas: CO + 2H ₂ \rightarrow CH ₃ OH
			D Petrol is made by reforming the naphtha fraction of crude oil
			$nCO + (2n+1)H_2 \rightarrow nH_2O + hydrocarbon$
			Multiply out brackets
			$nCO + 2nH_2 + H_2 \rightarrow nH_2O + hydrocarbon$
			Separate out H_2 which forms H_2O
22	D	54	$nC \mathcal{O} + nH_2 + nH_2 + H_2 \rightarrow nH_2O + hydrocarbon$
	U		Cancel out water
			$nC + nH_2 + H_2 \rightarrow hydrocarbon$
			Build hydrocarbon into general formula
			$C_nH_{2n} + H_2 \rightarrow Hydrocarbon$
			$C_nH_{2n+2} = Hydrocarbon$
23	C	70	Reaction X is hydration as water is added across a C=C double bond
23			Reaction Y is oxidation as a secondary alcohol is converted into a ketone
l		•	· · · · ·

		1						
24	В	68	Diacid monomer must have 2 carboxyl groups to be a diacid and they					
			should be on carbons C_1 and C_3 of benzene ring					
			☑A ozone absorbs harmful u.v. light which can cause skin cancer					
25	Α	80	⊠B ozone absorbs u.v. light not reflect					
	F N		EC chlorofluorocarbons break down ozone					
			ED chlorofluorocarbons were used as a refrigerant gas (and in aerosols in the past)					
			Polyester can be a fibre or a resin. The correct answers for both types are:					
26	D	68	Use Property Structure Resin Rigid Cross-linked					
_	<u> </u>		Fibre Flexible Linear					
27	A	68	Nylon is former by condensation polymerisation. During a condensation reaction, two molecules join together and a small molecule is removed from where the two molecules join together. This small molecule is usually, but not always, water. In this example, a Cl atom is removed from the first monomer and an H atom is removed from the					
			second monomer to form HCl.					
28	D	68	The polymer shown is poly(ethyne). The third bond in the triple bond takes part in the addition reaction as the ethyne monomer units polymerise together to make the long polymer chain leaving a double bond.					
_	-		This double bond is later altered to allow poly(ethyne) to be able to conduct electricity.					
			Inits double bond is later aftered to allow poly(entyne) to be able to conduct electricity. Image: A dehydrogenation is the removal of hydrogen but this reaction adds hydrogen atoms					
20	Л	00	☑B this reaction is a hydrogenation reaction as hydrogen is added across C=C bonds					
29	В	80	🗷 C hydrolysis reactions split the molecule into smaller units adding water at the break					
			\blacksquare D hydration reactions add water across a C=C double bond. 2mol H ₂ are added not H ₂ O					
			■ A This molecules has no C=C double bonds to react with bromine.					
30	C	63	B This molecules is not a primary alcohol. Primary alcohols oxidise to an aldehyde.					
		03	☑C This molecule is a secondary alcohol and will oxidise to a ketone					
			☑D There are no C=C double bonds to allow addition polymerisation ☑A Full scale production is not a stage is new product development					
24	A	10	B Pilot studies show whether a new product can be produced by the method profitably					
31	A	60	SC Research is an essential stage in the development of a new product					
			ID Scaling up is necessary to develop a new product in the large quantities necessary					
			⊠A 2I(g) + 2e ⁻ → 2I ⁻ (g) should have △H = 2x-349kJ = -698kJ					
			⊠B 2I(g) + 2e ⁻ → 2I ⁻ (g) should have △H = 2x-349kJ = -698kJ					
	•	70	EC I₂(g) → 2I(g) should have ΔH = +243kJ					
32	D		☑D all steps have the correct enthalpy changes:					
	-	newH=62 revH=73	Enthalpy of sublimation $I_{2(s)} \longrightarrow I_{2(g)} \Delta H = +60 kJ$					
		1001-13	Bond dissociation of I_2 $I_{2(g)} \longrightarrow 2I_{(g)} \Delta H = +243 kJ$					
			2xelectron affinity of iodine $2I_{(g)} + 2e^{-} \rightarrow 2I^{-}_{(g)} \Delta H = -698 kJ$					
			$\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4 \qquad \qquad$					
		64						
33	Δ	•••	$\Delta H_4 = \Delta H_1 - \Delta H_2 - \Delta H_3$ $\Delta H_4 = -210 - (-50) - (-86)$ $\Delta H_2 = -50 \text{ kJ mol}^{-1}$					
	F \	newH=58	$\Delta H_4 = -74 k T mol^{-1}$					
		revH=69						
			But ΔH for Z to Y = +74kJ mol ⁻¹ X \longrightarrow Y					
	•	87	☑A at equilibrium rate of the forward reaction = rate of reverse reaction					
34	Α	•••	E at equilibrium the concentration of reactants and products are constant not equal E at equilibrium both forward and reverse reactions continue at equal rate					
	~ *		E at equilibrium born forward and reverse reactions continue at equal rate ED catalysts do not change the position of equilibrium					
		1641-00	\blacksquare A Forward reaction: 2mol gas \rightarrow 1mol gas \therefore forward reaction decreases pressure					
		83	\square B Forward reaction: 2mol gas \rightarrow 2mol gas \therefore no change in pressure					
35	В		\blacksquare C Forward reaction: 3mol gas \rightarrow 2mol gas \therefore forward reaction decreases pressure					
		revH=84	\blacksquare D Forward reaction: 4mol gas \rightarrow 2mol gas \therefore forward reaction decreases pressure					

			The red co	lour will fade as	equilibrium shi	fts to right.		
		10	\blacksquare A Equilibrium shifts to left as product (H ⁺) is added to equilibrium					
36	C	40			•	Br ⁻) is added to equilibrium		
		revH=33	ØC Equilib	rium shifts to r	ight as product	(Br ⁻) is removed by Ag ⁺ Br ⁻ (s) precipitation		
			🗷 D Equilib	rium shifts to le	eft as product (OBr ⁻) is added to equilibrium		
			🗷 A [OH ⁻] (decreases as so	dium hydroxide	solution is diluted with water		
37	Ν	56			•	solution is diluted with water		
57	U	50		•		diluted as there are less ions to conduct		
						increases [H ⁺] and decreases conductivity		
				e: pH= 3 ∴[H⁺]				
20			Apple Juice: pH= 5 \therefore [H ⁺] = 10 ⁻⁵ mol l ⁻¹					
38	A	54	$pH=3 \rightarrow pH$	=5 is a decreas		on of H⁺ by a factor of 100		
						ce : Apple Juice		
					10	00 : 1		
			Cu²⁺	+ 2e ⁻	→ Cu	$2Cl^{-} \longrightarrow Cl_{2} + 2e^{-}$		
	~			2mol	1mol	1mol 2mol		
39	В	5/		193000 <i>C</i>	63.5g	24litres 193000C		
	_		0.127/63.5	x 193000C	0.127g	³⁸⁶ / ₁₉₃₀₀₀ × 24litres 286C		
				= 386C		= 0.048litres		
			⊠A radioa	ctive calcium wi	ll have a differe	ent mass number from non-radioactive calcium		
10	٨	61	🗷 B All cald	ium atoms have	same chemical	properties (as they have 2,8,8,2 arrangement)		
40	A	10	🗷 C All calc	ium atoms have	an atomic numb	per if 20		
			🗷 D All cald	cium atoms have	e 20 electrons a	nd an arrangement of 2,8,8,2		

2	015 Highe	r Chemistry Marking Scheme					
Long Qu	Answer	Reasoning					
1a	London dispersion forces covalent bonds	The covalent bonds inside the S ₈ rings do not break as the sulphur melts. When sulphur S ₈ melts, London dispersion forces between the S ₈ rings must be overcome but as these are weak then sulphur has a lower melting point. Silicon dioxide is a covalent network. Covalent bonds must be broken before a covalent network will melt into a liquid resulting in a high melting point.					
1b(i)	$S \xrightarrow{P} S$ $V \xrightarrow{S} /$ $P \xrightarrow{P} P$	Any structure for P₄S₃ that obeys the following valency rules: • 3 bonds per P atoms • 2 bonds per S atom					
1b(ii)	Increased nuclear attraction/charge or more protons in sulphur nucleus	Sulphur and phosphorus are in the same period of the periodic table and the same shell is being filled with electrons. Sulphur has 16 protons which pull in the outer shell of the sulphur atom further than the 15 protons in a phosphorus nucleus would do. Electrons closer to the nucleus are harder to remove.					
1b(iii)	Greater number of London dispersion forces between S ₈ molecules than P₄ molecules	Both P_4 and S_8 contain non-polar molecules. Both substances are solid at room temperature due to the number of London dispersion forces between the molecules which bring the molecules close enough to be a solid. Sulphur has a higher melting point than phosphorus due to greater numbers of London dispersion forces between molecules of 8 atoms than phosphorus atoms with only 4 atoms inside the molecule.					
2a	45-46	From graph: rate = 0.0022 s ⁻¹ Rate = $\frac{1}{\text{time}}$: time = $\frac{1}{\text{rate}}$ = $\frac{1}{0.022}$ = 45s					
2b(i)	Curve and peak drawn to left of original curve	So of particles kinetic energy					
2b(ii)	Line drawn to the left of the Ea line.	Solution of the second					
3а	Diagram showing:	1mark: workable apparatus for passing the steam through the strawberry gum (steam must pass through the strawberry gum leaves not just pass over) 1mark: workable apparatus for condensing the steam and essential oil					

3b		H H O H H O H H O H H O H H O H H O H H O H H O H H O H H O H H O H H O H H O H	H 				
		Cinnamic acid + methanol — Methyl cinnamate + water					
		1mol 1mol					
2.	5.0%	148g 162g					
3c	52%	6.5g 162g × ^{6.5} / ₁₄₈ = 7.1g (theoretical)					
		% yield = $\frac{\text{actual}}{\text{theoretical}} \times 100 = \frac{3.7}{7.1} \times 100 = 52\%$					
4a	Energy or vitamins	A balanced diet will contain the appropriate mix of carbohydrates, fats/oils, protein, fibre, vitamins and minerals					
	_	Triglycerides are formed in the condensation reaction of three fatt	•				
4b	Esters	molecules with glycerol. The fatty acid molecules have carboxyl grou which join to a hydroxyl group on glycerol. Water is removed as the	•				
1		Hydrolysis is the breaking of fats/oils into three fatty acids and a c					
4c	hydrolysis	molecule with three molecules of water added at the breaks.					
		HO					
		amino acid 2					
		dmino acid 2 H ₂ C amino acid 4	4				
50	4	оннон он	H				
5a		$-\mathbf{C}$	N—				
		H H_2C CH_2 H H H					
		H H2C CH2 H H H					
		amino acid 1 amino acid 3					
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $)				
			L				
5b	One from:	HO - C - C - N - H $HO - C - C - N - H$ $HO - C - C - N - H$					
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N-H				
		amino acid 1&4 amino acid 2 amino acid 3					
	More branched or	Reforming of straight chain molecules in petrol into branched chain	or				
6a (i)	ringed/aromatic	ring/aromatic hydrocarbons keeps the molecules far enough apart when					
	molecules formed	they are compressed so that they do not auto-ignite before the spa	rk.				
		€H 2 3 H€					
6a (ii)	C_8H_{10}						
		Alcohol is a volatile liquid which evaporates quickly. Placing the lid or	n the				
6b(i)	Prevent loss	spirit burner reduces evaporation of alcohol. Alcohol which evaporat					
	by evaporation	does not release energy and makes the answer more inaccurate.					

		-					_		
		Eh	=	C	× m	×	ΔT		
		Energy	=	specific heat capacity	x mas	s x	change in temperature		
		Eh	=	4.18	× 0.1	×	21		
	1015	Eh	=	8.78 kJ					
6b(ii)	-1015			2)+(10×1)+(1×16	S) - 48+10+16	- 740			
						•			
			0	.64g ↔					
				74g ↔		$J \times \frac{74}{0.64}$			
						<u>5 kJ mol⁻¹</u>			
	A 1 1		ohol Combustion	Ethanol	Propan-1-ol		Pentan-1-ol		
6c	Answer between		mol ⁻¹)	-1367	-2020	-2676	-		
	-3325 to -3340	Differe	1CE (kJ mol ⁻¹)	6	53 6	56 (6	59)		
		Predict	0N (kJ mol ⁻¹)	-	-	-	-3335		
_	Maintain	The variab	le resistor	r allows the ex	xperiment to b	be carried ou	t at a		
7a				e current flow	5	•	5		
	steady current	· · ·		s or the conce					
		1cm² leaf r	equires 0.	030A ∴ 24cm	-		/ ₁ = 0.72A		
				Cu ²⁺ + 2e ⁻		Cu			
				2mol		1mol			
7b	18996			2x9650	00	63.5g			
10	10770	$193000C \times \frac{4.5}{63.5}$ 4.5g							
		= 13677 <i>C</i>							
		$t = \frac{Q}{I} = \frac{13677}{0.72} = 18996s$							
		1	••• =						
8a	Equation showing:		60	$C_{0} \rightarrow$	⁶⁰ ₂₈ Ni +				
Uu	Equation showing.		27		28	-1 C			
	Gamma is high energy	Gamma radiation is high energy electromagnetic radiation. It needs a thick							
8b	or very penetrating			o stop it and w	•				
	71 5			erilise the insi					
		R	adioactivi	ty Number	of Half-lives	Time (yea	ars)		
			1		0	0	5.07		
8c(i)	21.08		¹ / ₂		1	1x5.27 =			
			¹ / ₄		2	2x5.27 = 1			
			$\frac{1}{8}$		<u> </u>	3x5.27 = 1 4x5.27 = 2			
8	No change			dioisotope is d temperature,	•				
8c(ii)	ino chunge		-	t alter the hal		• •			
					,	<u></u>			
	المعامين المعامين			U II					
9a (i)	Hydroxyl and				11	\circ			
	carboxyl groups			С — ОН		0 —			
			car	boxyl group	hydrox	yl group			
	forms hydrogen	Hydrogen	oonding is	formed when	N—Н, О—Н с	or H—F bond	s interact		
9a (ii)	, .	with water molecules. These bonds are highly polar allowing the compounds							
		containing	these bon	ds to be solub	le in a polar so	olvent like wa	ter.		
	H⁺ ions are not		•		•	•			
9b	produced until	is absent. W	/hen water	is added to solid	d citric acid, H⁺	ions will disso	ciate from		
10	dissolved in water			then react with					
9a (ii)	forms hydrogen bonds with water H ⁺ ions are not	Hydrogen bonding is formed when N—H, O—H or H—F bonds interact with water molecules. These bonds are highly polar allowing the compo- containing these bonds to be soluble in a polar solvent like water. Acidity and alkalinity are water-based systems and no pH can be measured if w				ne compounds ter.			

9c	B	Endothermic reactions take energy from the surroundings and lower the temperature in those surroundings. On a potential energy diagram the products are higher than the reactants. Exothermic reactions give heat to the surroundings and raise the temperature of the surroundings. On a potential energy diagram the products are lower than the reactants.						
9d	4.29 litres	$\begin{array}{c} \mbox{gfm Na}HCO_3 = 84g & \mbox{no. of mol} = \frac{mass}{gfm} = \frac{15g}{84g} = 0.179 \mbox{mol} \\ \hline C_6H_8O_7 + 3NaHCO_3 \longrightarrow C_6H_5O_7Na_3 + 3H_2O + 3CO_2 \\ 3mol & 3mol \\ 1mol & 0.179 \mbox{mol} \\ 0.179 \mbox{mol} & 0.179 \mbox{mol} \\ \hline gfm CO_2 = (1\times12) + (2\times16) = 12 + 32 = 44g \\ \hline \end{tabular} Volume = no. of mol \times Molar \end{tabular} Volume = 0.179 \mbox{mol} \times 24 \mbox{ litres mol}^{-1} = 4.29 \mbox{ litres} \\ \hline \end{array}$						
10a	Acid which partially ionises/dissociates	Strong acids fully dissociate into ions e.g. hydrochloric acid, sulphuric acid Weak acids only partially dissociate with only a small percentage of the possible H ⁺ ions dissociated e.g. ethanoic acid, sulphurous acid						
10Ь	pH greater than 7	 Sodium cyanide is made from sodium hydroxide (strong alkali) & hydrocyanic acid (weak acid) Salts made from strong acids and strong alkalis have pH=7 Salts made from weak acids and strong alkalis have pH>7 Salts made from strong acids and weak alkalis have pH<7 						
10c(i)	Equation showing:	$4Au + 8NaCN + O_2 + 2H_2O \rightarrow 4NaAu(CN)_2 + 4NaOH$						
		pH 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14						
10c(ii)	10 ⁻⁴ mol l ⁻¹	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
11a (i)	— <u>с</u> — н 0	Aldehyde groups contain a carbonyl (C=O) group with a hydrogen atom attached. The carbon in the aldehyde group is always carbon number one in any numbering system assigned to an aldehyde when naming the compound.						
11a (ii)	Glucose/Fehling's mixture is heated	Fehling's solution and Benedict's solution both react with aldehyde groups giving a blue to brick red colour change. The reaction must be heated to speed up the reaction/colour change.						
11a(iii)	Blue to brick red	Colour change must be described as blue at start but the following colours are acceptable as the end colour: orange, (brick) red, yellow, brown, green						
11b	$H = H = CH_2OH$ $HO = CH_2OH$ $HO = CH_2OH$ $H = CH_2OH$ $H = CH_2OH$	Problem Solving Question						
11c	Condensation	Condensation Polymerisation: small molecules (e.g. glucose) joining up to make a larger molecule (e.g. starch) with a small molecule (e.g. water) removed at the joins.						
11d	Answer to include:	Amylopectin molecules are unable to pack closely together due to shape and can separate more easily. (It has more readily accessible -OH groups.) Amylose molecules pack closer together and more difficult to separate.						
12a(i)	Flow chart complete with:	1 st Mark: calcium carbonate ammonia carbon dioxide carbon dioxide calcium oxide 2nd Mark: sodium hydrogencarbonate ammonium chloride water sodium carbonate						

12a(ii)	Calcium chloride/ byproducts can be sold	The calcium chloride can be sold for profit even though it is not the main product of the Solvay Process. If the calcium chloride is not sold for profit then it would have to be disposed of responsibly at a cost.
12b	Adding Na ⁺ shifts equilibrium to right	Brine contains Na ⁺ ions. Na ⁺ ions are a reactant in the reaction. When a reactant is added to a reaction at equilibrium, the equilibrium shifts to the right to make additional products and remove the additional Na ⁺ ions.
12c	+20 kJ mol ⁻¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
13a	Answer to include:	1 st mark: ammonia is polar and trichloramine is non-polar 2 nd mark: electronegativity difference is bigger in N-H bond than N-Cl bond ∴ NH₃ is polar and NCl is non-polar
13b(i)	2I ⁻ → I ₂ + 2e ⁻	Redox equation:NaOCI+ $2I^-$ + $2H^+$ \rightarrow I_2 +NaCI+ H_2O Oxidation step: $2I^ \rightarrow$ I_2 + $2e^-$ Reduction step:NaOCI+ $2H^+$ + $2e^-$ NaCI+ H_2O
13b(ii)	Starch acts as an indicator	Starch solution acts as indicator in this reaction. Starch turns blue/black in the presence of iodine and is colourless when there is no iodine present. The end point of a reaction is detected when all the iodine has reacted with the thiosulphate ions by the colour change blue/black to colourless.
13b(iii)	6.20x10 ⁻⁵ mol l ⁻¹	$\begin{split} & S_2 O_3^{2^-} \text{ no. of mol = concentration x volume = } 0.00100^{\text{litres x }} 0.0124 \text{ mol } l^{-1} = 1.24 \times 10^{-5} \text{ mol} \\ & I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6 \\ & 1mol & 2mol \\ 6.20 \times 10^{-6}\text{mol} & 1.24 \times 10^{-5}\text{mol} \\ & NaOCI + 2I^- + 2H^+ \longrightarrow I_2 + NaCI + H_2O \\ & 1mol & 1mol \\ 6.20 \times 10^{-6}\text{mol} & 6.20 \times 10^{-6}\text{mol} \\ & 100 \text{ cm}^3 \text{ of swimming pool water } & \text{contains } 6.20 \times 10^{-6} \text{ mol } \times 10^{-0}/_{100} \\ & = 6.20 \times 10^{-5} \text{ mol } l^{-1} \end{split}$